Mastura Azzura July 2011 ~ Dunia Elektro

Thursday, July 28, 2011

Teori Transfer Daya Maksimum

Posted by Aim on 9:42 AM with No comments
Teorema ini menyatakan bahwa :
Transfer daya maksimum terjadi jika nilai resistansi beban sama dengan nilai resistansi sumber, baik dipasang seri dengan sumber tegangan ataupun dipasang paralel dengan sumber arus dan nilai reaktansi sumber adalah negatif dari nilai reaktansi beban.

Daya listrik ditransfer dari satu tempat ke tempat lainnya melalui saluran transmisi. Saluran transmisi meliputi impedansi, oleh sebab itu arus listrik yang mengalir akan menimbulkan rugi daya yang sepanjang saluran. Pada umumnya dikehendaki meminimalkan rugi daya tersebut, sehingga daya yang sampai ke tujuan semaksimal mungkin.
Perhatikan gambar rangkaian yang merupakan suatu model sistem transfer daya maksimum.

ZS adalah impedansi saluran yang sudah ada jadi tetap. Hendak ditentukan beban ZB supaya daya yang diterimanya maksimum. Biarkan ZS = RS+jXS dan ZB = RB+jXB . RS dan XS sudah ada, jadi dianggap tetap, RB dan XB dapat diubah secara bebas. Daya aktif beban adalah :
Supaya PB maksimum, penyebut suku terakhir haruslah minimum yaitu salah satu persyaratan haruslah XB = -XS. Persoalan menjadi : maksimumkan PB dengan merubah-rubah RB. Haruslah dipenuhi persyaratan : dPB/dRB = 0.

Jadi persyaratan yang harus dipenuhi supaya daya yang ditransfer maksimum adalah 

ZB = ZS*

Yaitu impedansi beban dan impedansi saluran transmisi (termasuk impedansi sumber) saling berkonyugasi.

Karena RB =RS maka rugi daya pada saluran = daya beban atau daya luaran sehingga efisiensi maksimum sistem adalah 50%. Tentu hal ini tidak baik bagi suatu sistem penyaluran daya besar-besaran. Karena itu untuk sistem penyaluran daya besar tidak digunakan prinsip transfer daya maksimum, yang diperlukan adalah supaya rugi rugi daya dan jatuh tegangan pada saluran transmisi seminimal mungkin untuk memenuhi permintaan daya beban yang sudah tertentu. Ini dilakukan dengan jalan meminimalkan impedansi saluran ZS, tentu dengan memperhatikan kriteria biaya dan konstruksi saluran. 

Untuk menyalurkan daya tertentu, jalan yang lazim ditempuh ialah menaikkan tegangan saluran transmisi sehingga untuk menyalurkan suatu daya tertentu besar arus turun, sehingga rugi daya turun sebanding dengan kuadrat arus. 

Untuk sistem telekomunikasi, besar daya yang ditransferkan relatif kecil, yang penting adalah informasi yang disalurkan dapat diterima dengan jelas. Karena itu prinsip transfer daya maksimum dapat digunakan. Menyamakan impedansi beban (misalnya impedansi penerima telepon) dengan konyugat saluran disebut penyelarasan impedansi (impedance matching).

Teori Transformasi Sumber

Posted by Aim on 9:24 AM with No comments
Sumber tegangan yang dihubungserikan dengan resistansi dapat diganti dengan sumber arus yang dihubungparalelkan dengan resistansi yang sama atau sebaliknya.Teori ini berguna untuk menyederhanakan rangkaian dengan multi sumber tegangan atau multi sumber arus menjadi satu sumber pengganti (Teorema Millman).



  • Ubah semua sumber tegangan ke sumber arus
  • Jumlahkan semua sumber arus paralel dan tahanan paralel


  • Konversikan hasil akhir sumber arus ke sumber tegangan

Teori Norton

Posted by Aim on 9:02 AM with No comments
Pada teorema ini berlaku :

Suatu rangkaian listrik dapat disederhanakan dengan hanya terdiri dari satu buah sumber arus yang dihubungparalelkan dengan sebuah tahanan/impedansi ekivelennya pada dua terminal yang diamati.

Tujuan teori Norton adalah untuk menyederhanakan analisis rangkaian, yaitu dengan membuat rangkaian pengganti yang berupa sumber arus yang diparalel dengan suatu tahanan ekivalennya.


Langkah-langkah penyelesaian dengan teori Norton.
  • Cari dan tentukan titik terminal A-B dimana parameter yang ditanyakan.
  • Lepaskan komponen pada titik A-B tersebut, short circuit kan pada terminal A-B kemudian hitung nilai arus yang mengalir dititik A-B tersebut (IAB = Isc = IN).
  • Tentukan nilai tahanan diukur pada titik A-B tersebut saat semua sumber di non aktifkan dengan cara diganti dengan tahanan dalamnya (untuk sumber tegangan diganti dengan rangkaian short circuit dan untuk sumber arus diganti dengan rangkaian open circuit) (RAB = RN = Rth).
  • Gambarkan kembali rangkaian pengganti Nortonnya, kemudian pasangkan kembali komponen yang tadi dilepas dan hitung parameter yang ditanyakan.

Teori Thevenin

Posted by Aim on 8:38 AM with No comments
Pada teorema ini berlaku bahwa :

Suatu rangkaian listrik dapat disederhanakan dengan hanya terdiri dari sebuah sumber tegangan yang seri dengan sebuah impedansi ekivalennya pada dua terminal yang diamati, dimana rangkaian ini disebut sebagai rangkaian ekivalen thevenin.

Tujuan sebenarnya dari teori ini adalah untuk menyederhanakan analisis rangkaian, yaitu membuat rangkaian pengganti yang berupa sumber tegangan yang dihubungkan seri dengan suatu impedansi ekivalennya.


Cara memperoleh resistansi/impedansi pengganti (Rth/Zth) adalah impedansi masuk dilihat dari ujung-ujung AB dimana semua sumber tegangan/sumber arus dimatikan atau dinon aktifkan (yaitu untuk sumber tegangan digantikan dengan rangkaian short circuit dan untuk sumber arus digantikan dengan rangkaian open circuit). 


Langkah-langkah penyelesaian dengan teori Thevenin

  • Cari dan tentukan titik terminal A-B dimana parameter yang ditanyakan.
  • Lepaskan komponen pada titik A-B tersebut, open circuit kan pada terminal A-B kemudian hitung nilai tegangan dititik A-B tersebut (VAB = Vth).
  • Tentukan nilai tahanan diukur pada titik A-B tersebut saat semua sumber di non aktifkan dengan cara diganti dengan tahanan dalamnya (untuk sumber tegangan diganti dengan rangkaian short circuit dan untuk sumber arus diganti dengan rangkaian open circuit) (RAB = Rth).
  • Gambarkan kembali rangkaian pengganti Theveninnya, kemudian pasangkan kembali komponen yang tadi dilepas dan hitung parameter yang ditanyakan.

Teori Substitusi

Posted by Aim on 7:09 AM with No comments
Pada teorema ini berlaku bahwa :
Suatu komponen atau elemen pasif yang dilalui oleh sebuah arus yang mengalir (sebesar i) maka pada komponen pasif tersebut dapat digantikan dengan sumber tegangan Vs yang mempunyai nilai yang sama saat arus tersebut melalui komponen pasif tersebut.

Jika pada komponen pasifnya adalah sebuah resistor sebesar R, maka sumber tegangan penggantinya bernilai Vs = i.R dengan tahanan dalam dari sumber tegangan tersebut Sama dengan nol.

Rangkaian berikut dapat dianalisa dengan teori substitusi untuk menentukan arus yang mengalir pada resistor 2Ω.

Harus diingat bahwa elemen pasif yang dilalui oleh sebuah arus yang mengalir (sebesar i) maka pada elemen pasif tersebut dapat digantikan dengan sumber tegangan Vs yang mempunyai nilai yang sama saat arus tersebut melaluinya. Kemudian untuk mendapatkan hasil akhirnya analisa dapat dilakukan dengan analisis mesh atau arus loop.


Teori Superposisi

Posted by Aim on 6:45 AM with No comments
Teori superposisi ini hanya berlaku untuk rangkaian yang bersifat linier. Rangkaian linier adalah suatu rangkaian dimana persamaan yang muncul akan memenuhi jika y = kx, dimana k = konstanta dan x = variabel. Pada setiap rangkaian linier dengan beberapa buah sumber tegangan/ sumber arus dapat dihitung dengan cara :

Menjumlah aljabarkan tegangan/ arus yang disebabkan tiap sumber yang bekerja sendiri-sendiri.


Pengertian dari teori diatas bahwa jika terdapat n buah sumber maka dengan teori superposisi sama dengan n buah keadaan rangkaian yang dianalisis, dimana nantinya n buah keadaan tersebut akan dijumlahkan. Ini berarti bahwa bila terpasang dua atau lebih sumber tegangan/sumber arus, maka setiap kali hanya satu sumber yang terpasang secara bergantian. Sumber tegangan dihilangkan dengan cara menghubung singkatkan ujung-ujungnya (short circuit), sedangkan sumber arus dihilangkan dengan cara membuka hubungannya (open circuit).

Rangkaian berikut ini dapat dianalisa dengan mengkondisikan sumber tegangan aktif/bekerja sehingga sumber arusnya menjadi tidak aktif (diganti dengan rangkaian open circuit). Oleh sebab itu arus i dalam kondisi sumber arus OC yang mengalir di R 10 Ω dapat ditentukan. 


Kemudian dengan mengkondisikan sumber arus aktif/bekerja maka sumber tegangan tidak aktif (diganti dengan rangkaian short circuit). Disini arus i dalam kondisi sumber tegangan SC yang mengalir di R10Ω dapat ditentukan juga. Akhirnya dengan penjumlahan aljabar kedua kondisi tersebut maka arus total akan diperoleh.


Pembangkit Listrik Tenaga Diesel (PLTD)

Posted by Aim on 6:12 AM with No comments
PLTD TELLO
Terminologi pembangkit listrik berbahan bakar minyak pada umumnya diidentikkan dengan Pembangkit Listrik Tenaga Diesel (PLTD). Walau pada kenyataannya bahan bakar minyak juga terkadang digunakan pada PLTG. Prinsip kerja PLTD adalah dengan menggunakan mesin diesel yang berbahan bakar High Speed Diesel Oil (HSDO). Mesin diesel bekerja berdasarkan siklus diesel. Mulanya udara dikompresi ke dalam piston, yang kemudian diinjeksi dengan bahan bakar kedalam tempat yang sama. Kemudian pada tekanan tertentu campuran bahan bakar dan udara akan terbakar dengan sendirinya. Proses pembakaran seperti ini pada kenyataannya terkadang tidak menghasilkan pembakaran yang sempurna. Hal inilah yang menyebabkan efisiensi pembangkit jenis ini rendah, lebih kecil dari 50 %. Namun apabila dibandingkan dengan mesin bensin (otto), mesin diesel pada kapasitas daya yang besar masih memiliki efisiensi yang lebih tinggi, hal ini dikarenakan rasio kompresi pada mesin diesel jauh lebih besar daripada mesin bensin.

Mesin Diesel
Keuntungan utama penggunaan pembangkit listrik berbahan bakar minyak atau sering disebut dengan PLTD adalah dapat beroperasi sepanjang waktu selama masih tersediannya bahan bakar. Kehandalan pembangkit ini tinggi karena dalam operasinya tidak bergantung pada alam seperti halnya PLTA. Mengingat waktu start-nya yang cepat namun ongkos bahan bakarnya tergolong mahal dan bergantung dengan perubahan harga minyak dunia yang cenderung meningkat dari tahun ke tahun, PLTD disarankan hanya dipakai untuk melayani konsumen pada saat beban puncak.

Investasi awal pembangunan PLTD yang relatif murah, kebutuhan energi di daerah-daerah terisolasi yang mendesak dan kebutuhan energi daerah-daerah yang belum terlalu besar, pemerintah Indonesia berinisiatif membangun PLTD yang berfungsi sebagai base-supply untuk memenuhi kebutuhan listrik di daerah-daerah ini, untuk mengurangi biaya transmisi dan rugi-rugi jaringan dalam menyalurkan energi listrik dari kota terdekat.

Dengan digunakannya bahan bakar konvensional maka adanya kemungkinan pembangkit ini akan sulit dioperasikan di masa depan karena persediaan minyak bumi dunia yang semakin menipis. Harga minyak yang terus meningkat menjadi pertimbangan utama dalam menggunakan pembangkit ini. Harga minyak yang mahal diakibatkan karena pasar minyak dunia yang tidak stabil dan ongkos transportasi untuk membawa minyak tersebut ke daerah yang dituju. Padahal di sisi beban, PLN dipaksa menjual dengan harga murah. Inilah yang menyebabkan PLN rugi besar.

Skema Pembangkit Listrik Tenaga Diesel (PLTD)

Tuesday, July 26, 2011

Uranium

Posted by Aim on 1:19 PM with 1 comment
Uranium
Uranium adalah suatu unsur kimia dalam tabel periodik yang memiliki lambang U dan nomor atom 92. Uranium merupakan logam putih keperakan yang termasuk dalam deret aktinida tabel periodik. Uranium memiliki 92 proton dan 92 elektron, dan berelektron valensi 6. Inti uranium mengikat sebanyak 141 sampai dengan 146 neutron, sehingganya terdapat 6 isotop uranium. Isotop yang paling umum adalah uranium-238 (146 neutron) dan uranium-235 (143 neutron). Semua isotop uranium tidak stabil dan bersifat radioaktif lemah. Uranium memiliki bobot atom terberat kedua di antara semua unsur-unsur kimia yang dapat ditemukan secara alami. Massa jenis uranium kira-kira 70% lebih besar daripada timbal, namun tidaklah sepadat emas ataupun tungsten. Uranium dapat ditemukan secara alami dalam konsentrasi rendah (beberapa bagian per juta (ppm)) dalam tanah, bebatuan, dan air.

Uranium yang dapat dijumpai secara alami adalah uranium-238 (99,2742%), uranium-235 (0,7204%), dan sekelumit uranium-234 (0,0054%). Uranium meluruh secara lambat dengan memancarkan partikel alfa. Umur paruh uranium-238 adalah sekitar 4,47 milyar tahun, sedangkan untuk uranium-235 adalah 704 juta tahun. Oleh sebab itu, uranium dapat digunakan untuk penanggalan umur Bumi.

Uranium-235 merupakan satu-satunya isotop unsur kimia alami yang bersifat fisil (yakni dapat mempertahankan reaksi berantai pada fusi nuklir), sedangkan uranium-238 dapat dijadikan fisil menggunakan neutron cepat. Selain itu, uranium-238 juga dapat ditransmutasikan menjadi plutonium-239 yang bersifat fisil dalam reaktor nuklir. Isotop uranium lainnya yang juga bersifat fisil adalah uranium-233, yang dapat dihasilkan dari torium.

Uranium pertama kali ditemukan pada tahun 1789 oleh Martin Klaproth, seorang ilmuwan Jerman. Nama Uranium diambil dari nama planet Uranus yang ditemukan 8 tahun sebelumnya. Uranium terbentuk bersamaan dengan terjadinya bumi. Karena itu uranium dapat diketemukan di setiap batuan dan juga di air laut. Batuan yang mengandung uranium kadar tinggi disebut batuan uranium atau ”uranium ore” atau ”pitch-blende”



Saat ini dan di masa depan, uranium merupakan sumber energi penting mengingat kelimpahannya yang cukup besar. Meskipun demikian uranium dikategorikan sebagai sumber energi tak-terbarukan atau ”non-renewable energy source”. Uranium tersebar dalam batuan dan bahkan dalam air laut. Akan tetapi, seperti logam pada umumnya, uranium jarang terkonsentrasi secara cukup untuk bernilai ekonomis.Cadangan uranium yang telah diketahui secara pasti saat ini dan dapat dipungut dengan biaya kurang dari 130 USD/kgU adalah 3,3 juta ton. Cadangan uranium teridentifikasi yang dapat dipungut dengan biaya kurang dari 130 USD/kgU adalah 5,5 juta ton.Adapun uranium yang terkandung dalam batuan phosphate diperkirakan 22 juta ton, dan di air laut adalah 4200 juta ton.

Australia memiliki cadangan uranium sekitar 732.000 ton yang dapat ditambang dengan biaya 80 USD/kgU (jauh dibawah harga pasar), Kanada memiliki 345.000 ton uranium. Cadangan uranium Australia dalam kategori ini adalah sekitar 27% cadangan dunia, sedangkan Kanada sekitar 13%. Walaupun kalah dalam jumlah cadangan, faktor politis membuat Kanada lebih unggul dari Australia sebagai penyuplai utama uranium di pasar dunia. Pada tahun 2005 Australia mengekspor lebih dari 12.000 ton U3O8bernilai hampir 600 juta dollar Australia. Produksi aktual adalah sekitar 23% dari total dunia. Kanada menghasilkan hampir 14.000 ton U3O8pada tahun 2005, sekitar sepertiga dari total dunia dan sebagian besar diekspor.

Bagaimana dengan Uranium Indonesia!!!!!!

Badan Tenaga Nuklir Nasional (Batan) mencatat cadangan uranium di Indonesia sebanyak 53 ribu ton, dengan rincian sebanyak 29 ribu ton di Kalimantan Barat, dan 24 ribu ton sisanya di Bangka Belitung. Papua juga diindikasikan memiliki cadangan uranium yang cukup besar. Adanya dugaan Papua menyimpan cadangan uranium untuk bahan baku nuklir dalam skala besar didasarkan pada kesamaan jenis batuan di Papua dengan batuan di Australia, yang telah diketahui menyimpan cadangan uranium terbesar di dunia.

Jika suatu PLTN seukuran 1.000 MW membutuhkan 200 ton Uranium per tahun, maka dengan cadangan di Kalbar saja yang mencapai 29 ribu ton Uranium, itu berarti bisa memasok Uranium selama 145 tahun.


Pembangkit Listrik Tenaga Nuklir (PLTN)

Posted by Aim on 10:47 AM with No comments
Pembangkit Listrik Tenaga Nuklir
Pembangkit Listrik Tenaga Nuklir (PLTN) adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan (meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari). Daya yang dibangkitkan per unit pembangkit berkisar dari 40 MWe hingga 1000 MWe. Unit baru yang sedang dibangun pada tahun 2005 mempunyai daya 600-1200 MWe. Hingga saat ini, terdapat 442 PLTN berlisensi di dunia dengan 441 diantaranya beroperasi di 31 negara yang berbeda. Keseluruhan reaktor tersebut menyuplai 17% daya listrik dunia.

SEJARAH SINGKAT

Uranium 235
Keradioaktifan pertama kali ditemukan dalam bentuk garam uranium oleh fisikawan Perancis bernama Henri Becquerel pada tahun 1896. Pada tahun 1898 ilmuwan Perancis Marie dan Pierre Curie menemukan unsur radioaktif alami yaitu polonium (84Po) dan radium (88Ra). Sekitar tahun 1930, Irène dan Frédérick Joliot-Curie membuat radioaktif buatan yang pertama dengan cara menumbukkan boron (5B) dan aluminium (13Al) dengan sebuah partikel untuk membentuk isotop radioaktif nitrogen (7N) dan fosfor (15P). Isotop alami unsur-unsur ini bersifat stabil.

Ahli kimia Jerman, Otto Hahn dan Fritz Strassmann menemukan reaksi fissi (nuclear fission) pada tahun 1938. Ketika uranium diradiasikan dengan neutron, beberapa inti uranium terpecah menjadi dua dengan nomor atom setengah dari uranium. Reaksi fissi melepaskan jumlah energi yang sangat besar dan ini digunakan pada senjata dan reaktor nuklir.


Reaktor nuklir yang pertama kali membangkitkan listrik adalah stasiun pembangkit percobaan EBR-I pada 20 Desember 1951 di dekat Arco, Idaho, Amerika Serikat. Pada 27 Juni 1954, PLTN pertama dunia yang menghasilkan listrik untuk jaringan listrik (power grid) mulai beroperasi di Obninsk, Uni Soviet. PLTN skala komersil pertama adalah Calder Hall di Inggris yang dibuka pada 17 Oktober 1956.




JENIS-JENIS PLTN

PLTN dikelompokkan berdasarkan jenis reaktor yang digunakan. Tetapi ada juga PLTN yang menerapkan unit-unit independen, dan hal ini bisa menggunakan jenis reaktor yang berbeda. Sebagai tambahan, beberapa jenis reaktor berikut ini, di masa depan diharapkan mempunyai sistem keamanan pasif.

Reaktor Fisi

Reaktor daya fisi membangkitkan panas melalui reaksi fisi nuklir dari isotop fissil uranium dan plutonium. Selanjutnya reaktor daya fissi dikelompokkan lagi menjadi:

Reaktor thermal menggunakan moderator neutron untuk melambatkan atau me-moderate neutron sehingga mereka dapat menghasilkan reaksi fissi selanjutnya. Neutron yang dihasilkan dari reaksi fissi mempunyai energi yang tinggi atau dalam keadaan cepat, dan harus diturunkan energinya atau dilambatkan (dibuat thermal) oleh moderator sehingga dapat menjamin kelangsungan reaksi berantai. Hal ini berkaitan dengan jenis bahan bakar yang digunakan reaktor thermal yang lebih memilih neutron lambat ketimbang neutron cepat untuk melakukan reaksi fissi.

Reaksi Berantai
Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. Karena reaktor cepat menggunkan jenis bahan bakar yang berbeda dengan reaktor thermal, neutron yang dihasilkan di reaktor cepat tidak perlu dilambatkan guna menjamin reaksi fissi tetap berlangsung. Boleh dikatakan, bahwa reaktor thermal menggunakan neutron thermal dan reaktor cepat menggunakan neutron cepat dalam proses reaksi fissi masing-masing.

Reaktor subkritis menggunakan sumber neutron luar ketimbang menggunakan reaksi berantai untuk menghasilkan reaksi fissi. Hingga 2004 hal ini hanya berupa konsep teori saja, dan tidak ada purwarupa yang diusulkan atau dibangun untuk menghasilkan listrik, meskipun beberapa laboratorium mendemonstrasikan dan beberapa uji kelayakan sudah dilaksanakan.

Reaktor Thermal

Pressurized Water Reactor
Light Water Reactor (LWR)
  • Boiling Water Reactor (BWR)
  • Pressurized Water Reactor (PWR)
  • SSTAR, reaktor untuk jaringan kecil mirip PWR
Moderator Grafit
  • Magnox
  • Advanced Gas-Cooled Reactor (AGR)
  • High Temperature Gas Cooled Reactor (HTGR)
  • RBMK
  • Pabble Bed Reactor (PBR)
Moderator Air Berat
  • SGHWR
  • CANDU

Reaktor Cepat 

Reaktor Cepat
Meski reaktor nuklir generasi awal berjenis reaktor cepat, tetapi perkembangan reaktor nuklir jenis ini kalah dibandingkan dengan reaktor thermal. Keuntungan reaktor cepat diantaranya adalah siklus bahan bakar nuklir yang dimilikinya dapat menggunakan semua uranium yang terdapat dalam urainum alam, dan juga dapat mentransmutasikan radioisotop yang tergantung di dalam limbahnya menjadi material luruh cepat. Dengan alasan ini, sebenarnya reaktor cepat secara inheren lebih menjamin kelangsungan ketersedian energi ketimbang reaktor thermal. Lihat juga reaktor fast breeder. Karena sebagian besar reaktor cepat digunakan untuk menghasilkan plutonium, maka reaktor jenis ini terkait erat dengan proliferasi nuklir.
Lebih dari 20 purwarupa (prototype) reaktor cepat sudah dibangun di Amerika Serikat, Inggris, Uni Sovyet, Perancis, Jerman, Jepang, India, dan hingga 2004 1 unit reaktor sedang dibangun di China. Berikut beberapa reaktor cepat di dunia:

  • EBR-I, 0.2 MWe, AS, 1951-1964
  • Dounreay Fast Reactor, 14 MWe, Inggris, 1958-1977.
  • Enrico Fermi Nuclear Generating Station Unit 1, 94 MWe, AS, 1963-1972.
  • EBR-II, 20 MWe, AS, 1963-1994.
  • Phénix, 250 MWe, Perancis, 1973-sekarang.
  • BN-350, 150 MWe plus desalination, USSR/Kazakhstan, 1973-2000.
  • Prototype Fast Reactor, 250 MWe, Inggris, 1974-1994.
  • BN-600, 600 MWe, USSR/Russia, 1980-sekarang.
  • Superphénix, 1200 MWe, Perancis, 1985-1996.
  • FBTR, 13.2 MWe, India, 1985-sekarang.
  • Monju, 300 MWe, Jepang, 1994-sekarang.
  • PFBR, 500 MWe, India, 1998-sekarang.

Reaktor Fusi

Fusi nuklir menawarkan kemungkinan pelepasan energi yang besar dengan hanya sedikit limbah radioaktif yang dihasilkan serta dengan tingkat keamanan yang lebih baik. Namun demikian, saat ini masih terdapat kendal-kendala bidang keilmuan, teknik dan ekonomi yang menghambat penggunaan energi fusi guna pembangkitan listrik. Hal ini masih menjadi bidang penelitian aktif dengan skala besar seperti dapat dilihat di JET, ITER, dan Z machine.

KEUNTUNGAN DAN KEKURANGAN

Keuntungan PLTN dibandingkan dengan pembangkit daya utama lainnya adalah:
  1. Tidak menghasilkan emisi gas rumah kaca (selama operasi normal) - gas rumah kaca hanya dikeluarkan ketika Generator Diesel Darurat dinyalakan dan hanya sedikit menghasilkan gas).
  2. Tidak mencemari udara - tidak menghasilkan gas-gas berbahaya sepert karbon monoksida, sulfur dioksida, aerosol, mercury, nitrogen oksida, partikulate atau asap fotokimia.
  3. Sedikit menghasilkan limbah padat (selama operasi normal).
  4. Biaya bahan bakar rendah - hanya sedikit bahan bakar yang diperlukan.
  5. Ketersedian bahan bakar yang melimpah - sekali lagi, karena sangat sedikit bahan bakar yang diperlukan.
  6. Baterai nuklir
Berikut ini berberapa hal yang menjadi kekurangan PLTN:
  1. Risiko kecelakaan nuklir - kecelakaan nuklir terbesar adalah kecelakaan Chernobyl (yang tidak mempunyai containment building).
  2. Limbah nuklir - limbah radioaktif tingkat tinggi yang dihasilkan dapat bertahan hingga ribuan tahun.


Pembangkit Listrik Tenaga Nuklir (PLTN)
Perlahan namun pasti Indonesia berencana mengembangkan Pembangkit Listrik Tenaga Nuklir. Peraturan Pemerintah No.43/2006 tentang perizinan Reaktor Nuklir tertanggal 15 Desember 2006 lalu, merupakan momentum awal kebijakan pemerintah Indonesia mengenai PTLN. Kini, tinggal menunggu dikeluarkannya Keppres bagi kalangan investor untuk terlibat dalam pengembangan PLTN di Indonesia. Namun, mengapa sebagian masyarakat menolak keras?

Energi nuklir untuk tujuan sipil seperti reaktor nuklir pembangkit daya mulai gencar dikampanyekan setelah konferensi Genewa "On the peaceful uses of atomic energy" yang di sponsori PBB sekitar 1955. Pada mulanya perjanjian ini disepakati lima negara besar pemilik senjata nuklir, dengan tujuan agar tidak melakukan transfer teknologi senjata nuklir ke negara lain. Selain itu, untuk pengurangan produksi dan penghancuran senjata nuklir saat itu.

Hingga 1973 Amerika Serikat mengalami embargo minyak. Pembangkit Listrik Tenaga Nuklir (PLTN) mampu membantu negara Paman Sam tersebut mengatasi krisis energi. Sekitar 17% sumber listrik dipasok dengan membakar minyak dan hanya 5% dipasok dari energi nuklir. Namun, dalam waktu 20 tahun kemudian (1993) sumber listrik dari minyak bumi hanya sekitar 3%, sedangkan pasokan listrik energi nuklir naik menjadi 20%. Di Jepang, desain PLTN dibangun anti gempa sehingga mampu beroperasi dan memasok listrik kala gempa dasyat melanda sekitar musim dingin 1995. Lain halnya dengan Korea Selatan, pengembangan PLTN mampu meningkatkan pendapatan per kapita masyarakatnya, dari semula 400 dolar AS/tahun pada 1970 menjadi 10.000 dolar AS/tahun pada 2000.


Kendati dinilai menguntungkan bagi masyarakat di beberapa negara, namun Indonesia tidak serta merta mengambil keputusan serupa meskipun dalam beberapa tahun ini sudah mengalami kesulitan pasokan BBM untuk pembangkit listrik. Beberapa pengamat energi bahkan memprediksikan, Indonesia akan menjadi negara pengimpor minyak pada 2020. Tentunya, pemerintah tidak tinggal diam menghadapi masalah pelik di bidang sumber energi untuk pembangkit listrik ini. Dalam beberapa tahun terakhir, langkah mencari energi alternatif giat dilaksanakan.

Skema PLTN
Listrik umumnya dibangkitkan dari turbin yang digerakkan uap air. Uap air dihasilkan dengan mendidihkan air dalam bejana (boiller). Bahan bakar yang sering digunakan untuk mendidihkan air inilah yang membedakan nama pembangkit listrik. Pembangkit yang menggunakan bahan bakar fosil, biasanya disebut dengan Pembangkit Listrik Tenaga Uap (PLTU). PLTU sudah tersebar di Indonesia, dan telah mengalami masalah pergiliran pasokan arus listrik, harga, bahkan polusi. Masalah pergiliran pasokan arus listrik disebabkan masalah pasokan yang terbatas, karena tak adanya cadangan sumber listrik. Tentunya, harga dipastikan naik terus mengikuti harga minyak bumi. Sementara itu, penggunaan batu bara untuk suatu PLTU mulanya memang murah, namun sumber polusi banyak dikeluhkan. Jika gas, seperti SO2,CO2,NOX, sebagai hasil pembakaran disaring menggunakan filter, maka harga listrik menjadi tinggi dan tak kompetitif dengan pembangkit lain. Sebaliknya, jika tidak dilakukan tindakan, akan menyebabkan pencemaran dan merusak lingkungan. Selain itu, PLTU batu bara masih mengeluarkan radioaktif alam hasil pembakaran dan debu hasil pengangkutan yang setiap tahunnya mencapai 300.000 ton pada kapasitas 1000 Mega Watt elektrik (MWe).

Alternatif sumber energi pembangkit daya yang paling aman dan murah adalah tenaga air. Namun tenaga air ini sangat tergantung curah hujan dan memerlukan lahan yang sangat besar untuk menampung air. Padahal lahan yang digunakan cukup subur untuk ditanami tanaman pangan, serta jumlahnya terbatas, dan lokasinya tak dapat dipindahkan sesuai keperluan. Demikian pula dengan panas bumi, selain lokasi, teknologi untuk mengatasi belerang belum ada.

Satu lagi bahan bakar untuk mendidihkan air yaitu uranium 235 dalam PLTN. Banyak pengamat energi menilai, PLTN sangat ekonomis, kira - kira sama dengan harga PLTU batu bara tanpa pengolahan limbah. Sebenarnya, ada lima tipe PLTN yang banyak digunakan negara-negara maju saat ini. Dua tipe Boilling Water Reactor (BWR) dan Pressurized Water Reactor (PWR) dari Amerika. Kedua tipe, BHWR atau PHWR dengan pendingin air berat yang dikenal dengan tipe CANDU dari Canada, serta satu tipe dengan pendingin gas yang dikembangkan di Amerika dan Inggris.

Pemerintah Indonesia pun akhirnya menyusun rencana pemanfaatan teknologi nuklir untuk pembangkit listrik. Badan Pengawas Tenaga Nuklir (Bapeten), bisa dibilang, instansi yang paling bertanggung jawab terhadap ’aturan main’ pembangunan PLTN di Indonesia. Sebagai institusi bidang pengawasan, Bapeten diberi mandat membuat peraturan termasuk memberikan izin dan melakukan inspeksi bagi para pengguna

teknologi nuklir di Indonesia. Ada tiga prinsip utama yang menjadi landasan instansi yang baru dibentuk pada 1998 ini, yaitu keselamatan (safety), keamanan (security), dan kedamaian (safeguards) . Acuan dasar pengembangan nuklir di Indonesia, yaitu UU No.10/1997 tentang Ketenaganukliran. Dan sekitar Desember 2006 diterbitkan Peraturan Pemerintah No.43/2006 tentang Perizinan Reaktor Nuklir yang merupakan hasil rembug 15 departemen terkait, termasuk Bapetan. Dari sisi teknis tenaga nuklir, Badan Tenaga Atom Nasional (Batan) bahkan sudah bersusah payah mencari lokasi yang dinilai tepat untuk dibangun PLTN. Dari sekitar 14 tapak yang ditelusuri di seluruh wilayah Indonesia, akhirnya ditentukan sekitar lima lokasi yang dinilai layak untuk dibangun PLTN. Namun, kemudian ditentukan satu wilayah yang paling layak dibangun, yaitu di Semenanjung Muria, Kabupaten Jepara.

Rancangan PLTN Indonesia
Menurut Ferhat Aziz, Kepala Biro Kerjasama Hukum dan Humas Badan Tenaga Atom Nasional (Batan) sedikitnya 15 faktor dinilai untuk kelayakan tapak PLTN di Muria tersebut, lima diantaranya berkaitan dengan faktor keselamatan pembangunan. ''Boleh dibilang, penyiapan lokasi ini sebagai insentif pembangunan PLTN tahap awal dari Batan,'' ujarnya. Untuk Indonesia, Batan merekomendasikan pengembangan PLTN jenis PWR (pressurized water reactor) atau 'reaktor air tekan'. PWR menggunakan dua sistem pendingin, primer dan sekunder, berbeda dengan jenis BWR (boiling water reactor) yang hanya mengggunakan satu sistem pendingin. ''PWR paling banyak digunakan negara-negara di dunia, seperti Amerika Serikat, Korea, Jepang dan negara-negara di Eropa,'' ujarnya.

Sebenarnya, ada lima tipe PLTN yang banyak digunakan negara-negara maju saat ini. Dua tipe Boilling Water Reactor (BWR) dan Pressurized Water Reactor (PWR) dari Amerika. Kedua tipe, BHWR atau PHWR dengan pendingin air berat yang dikenal dengan tipe CANDU dari Canada, serta satu tipe dengan pendingin gas yang dikembangkan di Amerika dan Inggris. Namun hal itu belum cukup memuluskan jalan pengembangan tenaga nuklir untuk pembangkit daya. Menurut Dr Ir As Natio Lasman, Deputi Bidang Pengkajian Keselamatan Nuklir Bapeten, setelah dikeluarkan peraturan pemerintah, harus ada pula Keppres dan peraturan Kepala Bapeten. Salah satu regulasi yang kini tengah ditunggu kalangan bidang nuklir, yaitu Keppres mengenai Tim Nasional Pembangunan Nuklir. Keppres tersebut kini tengah digodok di Sekretariat Negara RI, dan menunggu disahkan Presiden. Tim Nasional yang dibentuk berdasarkan Keppres tersebut nantinya akan bertugas menyusun organisasi kepemilikan PLTN. ''Timnas akan menentukan kepemilikan PLTN apakah swasta murni, atau campuran swasta dan pemerintah. Jika sudah ditetapkan , maka investor baru bisa masuk. Namun, jika pemerintah menunda keluarnya Keppres tersebut maka dapat dipastikan target operasional PLTN di Indonesia akan tertunda,'' ujarnya.


Tidak hanya itu saja, sejumlah investor sudah ancang-ancang membangun PLTN di Indonesia. ''Saya tidak bisa menyebutkan nama perusahaan tertentu, namun berasal dari Korea, Jepang,Perancis, Amerika Serikat, termasuk Rusia,'' ujar Ferhat. Sedangkan perusahaan dalam negeri yang dinilai siap membangun PLTN di Indonesia, yaitu PT Pembangkit Listrik Negara (PLN). “Dari sisi sumber daya manusia sudah tentu berpengalaman dalam bidang pembangkit tenaga listrik, tinggal menambah kemampuan di bidang nuklir. Bisa mengambil dari sekolah atau perguruan tinggi yang mendalami bidang nuklir,” imbuhnya.


Disaat pemerintah bergiat menyusun perangkat aturan PLTN, sebagian kalangan masyarakat justru bersikap sebaliknya, yaitu menentang pengembangan PLTN di Indonesia. Bupati Kudus, HM Tamzil, misalnya, menolak rencana pembangunan PLTN di Semenanjung Muria. Dia kabarnya telah mengirim surat kepada Presiden Susilo Bambang Yudhoyono, DPR, dan DPD untuk mengambil kebijakan yang berpihak pada rakyat, yakni membatalkan rencana pembangunan PLTN di Muria. Alasannya pembangunan PLTN belum mendapatkan kesepakatan dari masyarakat. “Sangat tidak arif dan bijaksana jika pemerintah tetap memaksakan kehendak membangun PLTN, sementara masyarakat di sekitar lokasi pembangunan PLTN menolaknya.”

Ketidak setujuan pembangunan PLTN juga dilontarkan Praktisi kelistrikan yang juga Direktur Institut Bisnis dan Ekonomi Kerakyatan (Ibeka), Tri Mumpuni. “Pemerintah sebaiknya membatalkan rencana pembangunan PLTN di Pulau Jawa. Ketergantungan pada negara lain sangat tinggi. Kenapa kita tidak mengembangkan pembangkit listrik yang bisa dibangun sendiri, karena masih banyak potensi yang lain seperti panas bumi dan air,” Kata Mumpuni, yang sejauh ini telah membangun 60 pembangkit listrik tenaga mikro hidro di beberapa daerah.

Dari kalangan LSM pun juga melontarkan komentar yang senada. Mereka berpendapat jika pembangunan PLTN dianggap merupakan suatu opsi untuk memenuhi kebutuhan listrik dalam negeri, maka perlu dilakukan studi atas aspek kelayakan pembangunan PLTN, yang mencakup berbagai aspek, antara lain aspek ekonomi, kelayakan teknis pilihan lokasi (apakah lokasi termasuk dalam daerah patahan yang secara geologis rentan terhadap gempa, bahaya gelombang laut atau tsunami), aspek lingkungan (pencemaran, radiasi nuklir, dan kemungkinan terjadinya kecelakaan nuklir), aspek sosial budaya dan psikologis masyarakat, serta aspek pembiayaan dan investasi proyek. Hasil studi kelayakan nantinya harus secara transparan disampaikan pada masyarakat.

Penolakan rencana pembangunan PLTN terus menggelinding bak bola salju. Melihat keadaan seperti ini, Gubernur Jawa Tengah Mardiyanto berpendapat, jika sampai sekarang terus terjadi penolakan dari masyarakat, itu berkaitan dengan sosialisasi rencana pembangunan PLTN belum maksimal. Semestinya sosialisasi menjadi catatan tersendiri bagi Batan. Sebab, masyarakat khawatir kalau-kalau terjadi efek-efek dari PLTN yang tidak diinginkan. Untuk itu, Badan Tenaga Atom Nasional (Batan) diminta memberi penjelasan secara gamblang kepada masyarakat sekitar calon lokasi PLTN tentang manfaat dan dampak PLTN.



Menurut kajian Batan tahun 2003, diperoleh gambaran di masa depan Indonesia menghadapi krisis energi. Apalagi dengan cadangan sumber daya yang terus menipis diperlukan upaya-upaya serius mengatasinya. Jika tidak maka Indonesia akan dihadapkan pada krisis energi berkelanjutan.
Data yang ada menyebutkan cadangan sumber daya minyak bumi di Indonesia saat ini sekitar 321 miliar barel (1,2% potensi dunia), gas bumi sekitar 507 TSCF (3,3% potensi dunia), batubara sekitar 50 miliar ton (3% potensi dunia), panas bumi sekitar 27 ribu MW (40% potensi dunia), tenaga air sekitar 75 ribu MW (0,02% potensi dunia). Apabila tingkat produksi tetap seperti tingkat tahun 2002 dan tidak ada cadangan terbukti yang baru, maka cadangan minyak bumi diperkirakan akan habis dalam waktu kurang 10 tahun, gas bumi dalam waktu 30 tahun dan batubara dalam waktu 50 tahun.



“Munculnya PLTN sebagai solusi akhir mengatasi krisis energi di masa depan perlu menjadi pertimbangan, tapi munculnya keluhan masyarakat agaknya patut dicermati kalangan pengambil keputusan.” 







Monday, July 25, 2011

Pembangkit Listrik Tenaga Air (PLTA)

Posted by Aim on 6:28 AM with No comments
PLTA
Pembangkit listrik tenaga air (PLTA) merupakan salah satu pembangkit listrik yang menggunakan energi terbarukan berupa air. Salah satu keunggulan dari pembangkit ini adalah responnya yang cepat sehingga sangat sesuai untuk kondisi beban puncak maupun saat terjadi gangguan di jaringan. Selain kapasitas daya keluarannya yang paling besar diantara energi terbarukan lainnya, pembangkit listrik tenaga air ini juga telah ada sejak dahulu kala. Berikut ini merupakan penjelasan singkat mengenai pembangkit listrik tenaga air serta keberadaan potensi energi air yang masih belum digunakan.

Tenaga air telah berkontribusi banyak bagi pembangunan kesejahteraan manusia sejak beberapa puluh abad yang lalu. Beberapa catatan sejarah mengatakan bahwa penggunaan kincir air untuk pertanian, pompa dan fungsi lainnya telah ada sejak 300 SM di Yunani, meskipun peralatan-peralatan tersebut kemungkinan telah digunakan jauh sebelum masa itu. Pada masa-masa antara jaman tersebut hingga revolusi industri, aliran air dan angin merupakan sumber energi mekanik yang dapat digunakan selain energi yang dibangkitkan dari tenaga hewan. Perkembangan penggunaan energi dari air yang mengalir kemudian berkembang secara berkelanjutan sebagaimana dicontohkan pada desain tenaga air yang menakjubkan pada tahun 1600-an untuk istana Versailles dibagian luar Paris, Prancis. Sistem tersebut memiliki kapasitas yang sepadan dengan 56 kW energi listrik.

Sistem tenaga air mengubah energi dari air yang mengalir menjadi energi mekanik dan kemudian biasanya menjadi energi listrik. Air mengalir melalui kanal (penstock) melewati kincir air atau turbin dimana air akan menabrak sudu-sudu yang menyebabkan kincir air ataupun turbin berputar. Ketika digunakan untuk membangkitkan energi listrik, perputaran turbin menyebabkan perputaran poros rotor pada generator. Energi yang dibangkitkan dapat digunakan secara langsung, disimpan dalam baterai ataupun digunakan untuk memperbaiki kualitas listrik pada jaringan.

Jumlah daya listrik yang dapat dibangkitkan pada suatu pusat pembangkit listrik tenaga air tergantung pada ketinggian (h) dimana air jatuh dan laju aliran airnya. Ketinggian (h) menentukan besarnya energi potensial (EP) pada pusat pembangkit (EP = m x g x h). Laju aliran air adalah volume dari air (m3) yang melalui penampang kanal air per detiknya (q m3/s). Daya teoritis kasar (P kW) yang tersedia dapat ditulis sebagai:
P = 9.81.q.h
Daya yang tersedia ini kemudian akan diubah menggunakan turbin air menjadi daya mekanik. Karena turbin dan peralatan elektro-mekanis lainnya memiliki efisiensi yang lebih rendah dari 100% (biasanya 90% hingga 95%), daya listrik yang dibangkitkan akan lebih kecil dari energi kasar yang tersedia. Gambar 1 menunjukkan pusat pembangkit listrik tenaga air pada umumnya.
Gambar 1
Laju q dimana air jatuh dari ketinggian efektif h tergantung dari besarnya luas penampang kanal. Jika luas penampang kanal terlalu kecil, daya keluaran akan lebih kecil dari daya optimal karena laju air q dapat lebih besar. Di lain pihak, ukuran kanal tidak dapat dibuat besar secara sembarangan karena laju air q yang melalui kanal tergantung dari laju pengisian air pada reservoir air di belakang bendungan. Volume air pada reservoir dan ketinggian h yang bersangkutan, tergantung dari laju air yang masuk ke dalam reservoir. Selama musim kering, ketinggian air pada reservoir dapat berkurang karena jumlah air dalam reservoir lebih sedikit. Selama musim hujan, ketinggiannya dapat naik kembali karena air yang masuk dari berbagai aliran air yang mengisi bendungan. Fasilitas pembangkit listrik tenaga air harus di desain untuk menyeimbangkan aliran air yang digunakan untuk membangkitkan energi listrik dan jumlah air yang mengisi reservoir melalui sumber alami seperti curahan hujan, salju, dan aliran air lainnya.

Pembangkit listrik tenaga air merupakan aplikasi energi terbarukan yang terbesar dan paling matang secara teknologi, dimana terdapat 678.000 MW kapasitas daya listrik yang terpasang di seluruh dunia, yang menghasilkan lebih dari 22% listrik dunia (2564 TWh/tahun pada 1998). Dalam hal ini, 27.900 MW merupakan pembangkit skala kecil yang menghasilkan listrik 115 TWh/tahun. Di eropa barat, pembangkit listrik tenaga air berkontribusi sebesar 520 TWh listrik pada tahun 1998, atau sekitar 19% dari energi listrik di Eropa (sehingga menghindari emisi dari sejumlah 70 juta ton CO2 per tahun-nya). Pada sejumlah negara di Afrika dan Amerika Selatan, pembangkit listrik tenaga air merupakan sumber listrik yang menghasilkan lebih 90% kebutuhan energi listriknya. Gambar 2 memperlihatkan pembangkitan energi listrik dari air dunia yang meningkat secara dinamis tiap tahunnya. Di samping pembangkit listrik tenaga air yang berkapasitas besar yang telah ada, masih terdapat ruang untuk pengembangan lebih jauh dimana diperkirakan hanya sekitar 10% dari total potensi air di dunia yang telah digunakan.
Hampir semua proyek pembangkit listrik tenaga air memiliki skala yang besar, yang biasanya didefinisikan kapasitasnya lebih besar dari 30 MW. Tabel 1 menampilkan perbandingan antara beberapa ukuran pembangkit listrik tenaga air.


Air yang tersimpan dapat digunakan ketika dibutuhkan, baik secara terus-menerus (jika ukuran reservoirnya cukup besar) atau hanya saat beban listrik sangat dibutuhkan (beban puncak). Keuntungan dari pengaturan penyimpanan air ini tergabung dengan kapabilitas alami dari pembangkit listrik tenaga air yang memiliki respon yang cepat dalam ukuran menit terhadap perubahan beban. Oleh karena itu, pembangkit jenis ini sangat berharga karena memiliki pembangkitan listrik yang fleksibel untuk mengikuti perubahan beban yang terduga maupun yang tak terduga.

Pembangkit listrik tenaga air berskala besar telah berkembang dengan baik dan digunakan secara luas. Di perkirakan bahwa 20% hingga 25% dari potensi air skala besar di dunia telah dikembangkan. Pembangkit listrik tenaga air skala besar merupakan sumber energi terbarukan yang paling diinginkan berdasarkan ketersediaan dan fleksibilitas dari sumber energinya. Pada tahun 2008 telah dibangun proyek Three Gorges Dam yaitu PLTA dengan skala 22.5 GW dengan membendung sungai Yangtse di Cina dan merupakan PLTA terbesar di dunia saat ini. Pembangunan PLTA berskala besar membutuhkan biaya awal yang besar sementara biaya operasinya sangat kecil. Hal ini berbeda dengan pembangkit listrik berbahan bakar fosil seperti batu bara dan diesel.

Di Indonesia terdapat banyak sekali potensi air yang masih belum dimanfaatkan. Seperti sungai-sungai besar maupun kecil yang terdapat di berbagai daerah. Hal ini merupakan peluang yang bagus untuk pengembangan energi listrik di daerah khususnya daerah yang belum terjangkau energi listrik. Pengembangan dapat dilakukan dalam bentuk mikrohidro ataupun pikohidro yang biayanya relatif kecil.



Potensi Kekayaan Alam Indonesia
Kekayaan alam Indonesia memang melimpah ruah, dari mulai sumber daya alam sampai sumber daya mineral semua tersedia. Sumber daya mineral yang melimpah di negara tercinta ini antara lain emas, tembaga, platina, nikel, timah, batu bara, migas, dan panas bumi. Panas Bumi (Geothermal) adalah salah satu kekayaan sumber daya mineral yang belum banyak dimanfaatkan. Salah satu sumber geothermal kita yang berpotensi besar tetapi belum dieksploitasi adalah yang ada di Sarulla, dekat Tarutung, Sumut. Sumber panas bumi Sarulla bahkan dikabarkan memiliki cadangan terbesar di dunia.

Saat ini panas bumi (geothermal) mulai menjadi perhatian dunia karena energi yang dihasilkan dapat dikonversi menjadi energi listrik, selain bebas polusi. Beberapa pembangkit listrik bertenaga panas bumi telah terpasang di manca negara seperti di Amerika Serikat, Inggris, Perancis, Italia, Swedia, Swiss, Jerman, Selandia Baru, Australia, dan Jepang. Amerika saat ini bahkan sedang sibuk dengan riset besar mereka di bidang geothermal dengan nama Enhanced Geothermal Systems (EGS). EGS diprakarsai oleh US Department of Energy (DOE) dan bekerja sama dengan beberapa universitas seperti MIT, Southern Methodist University, dan University of Utah. Proyek ini merupakan program jangka panjang dimana pada 2050 geothermal meru-pakan sumber utama tenaga listrik Amerika Serikat. Program EGS bertujuan untuk meningkatkan sumber daya geothermal, menciptakan teknologi ter-baik dan ekonomis, memperpanjang life time sumur-sumur produksi, ekspansi sumber daya, menekan harga listrik geothermal menjadi seekono-mis mungkin, dan keunggulan lingkungan hidup. Program EGS telah mulai aktif sejak Desember 2005 yang lalu.

Pembangkit Listrik Tenaga Panas Bumi (PLTP) pada prinsipnya sama seperti Pembangkit Listrik Tenaga Uap (PLTU), hanya pada PLTU uap dibuat di permukaan menggunakan boiler, sedangkan pada PLTP uap berasal dari reservoir panas bumi. Apbila fluida di kepala sumur berupa fasa uap, maka uap tersebut dapat dialirkan langsung ke turbin, dan kemudian turbin akan mengubah energi panas bumi menjadi energi gerak yang akan memutar generatorsehingga dihasilkan energi listrik. Apabila fluida panas bumi keluar dari kepala sumur sebagai campuran fluida dua fasa (fasa uap dan fasa cair) maka terlebih dahulu dilakukan proses pemisahan pada fluida. Hal ini dimungkinkan dengan melewatkan fluida ke dalam separator, sehingga fasa uap akan terpisahkan dari fasa cairnya. Fraksi uap yang dihasilkan dari separator inilah yang kemudian dialirkan ke turbin.

Skema PLTP
Banyak sistem pembangkitan listrik dari fluida panas bumi yang telah diterapkan di lapangan, diantaranya :

Direct Dry Steam
Separated Steam
Single Flash Steam
Double Flash Steam
Multi Flash Steam
Binary Cycle
Combined Cycle
Well Head Generating Unit

Pembangunan Pembangkit Listrik Tenaga Panas Bumi cukup menjanjikan. Apalagi kalau diingat bahwa pemanfaatan energi panas bumi sebagai sumber penyedia tenaga listrik adalah termasuk teknologi yang tidak menimbulkan pencemaran terhadap lingkungan, suatu hal yang dewasa ini sangat diperhatikan dalam setiap pembangunan dan pemanfaatan teknologi, agar alam masih dapat memberikan daya dukungnya bagi kehidupan umat manusia. Bila pemanfaatan energi panas bumi dapat berkembang dengan baik, maka kota-kota di sekitar daerah sumber energi panas bumi yang pada umumnya terletak di daerah pegunungan, kebutuhan tenaga listriknya dapat dipenuhi dari pusat listrik tenaga panas bumi. Apabila masih terdapat sisa daya tenaga listrik dari pemanfaatan energi panas bumi, dapat disalurkan ke daerah lain sehingga ikut mengurangi beban yang harus dibangkitkan oleh pusat listrik tenaga uap, baik yang dibangkitkan oleh batubara maupun oleh tenaga diesel yang keduanya menimbulkan pencemaran udara.

Energy Panas Bumi (Geothermal)

Sunday, July 24, 2011

Pembangkit Listrik Tenaga Angin

Posted by Aim on 10:40 AM with No comments
Angin adalah salah satu bentuk energi yang tersedia di alam, Pembangkit Listrik Tenaga Angin mengkonversikan energi angin menjadi energi listrik dengan menggunakan turbin angin atau kincir angin. Cara kerjanya cukup sederhana, energi angin yang memutar turbin angin, diteruskan untuk memutar rotor pada generator dibagian belakang turbin angin, sehingga akan menghasilkan energi listrik. Energi Listrik ini biasanya akan disimpan kedalam baterai sebelum dapat dimanfaatkan. Secara sederhana sketsa kincir angin adalah sebagai berikut :
Sketsa Kincir Angin
Indonesia, negara kepulauan yang 2/3 wilayahnya adalah lautan dan mempunyai garis pantai terpanjang di dunia yaitu ± 80.791,42 Km merupakan wilayah potensial untuk pengembangan pembanglit listrik tenaga angin, namun sayang potensi ini nampaknya belum dilirik oleh pemerintah. Sungguh ironis, disaat Indonesia menjadi tuan rumah konfrensi dunia mengenai pemanasan global di Nusa Dua, Bali pada akhir tahun 2007, pemerintah justru akan membangun pembangkit listrik berbahan bakar batubara yang merupakan penyebab nomor 1 pemanasan global.

Syarat – syarat dan kondisi angin yang dapat digunakan untuk menghasilkan energi listrik dapat dilihat pada tabel.




Angin kelas 3 adalah batas minimum dan angin kelas 8 adalah batas maksimum energi angin yang dapat dimanfaatkan untuk menghasilkan energi listrik.

Pemanfaatan energi angin merupakan pemanfaatan energi terbarukan yang paling berkembang saat ini. Berdasarkan data dari WWEA (World Wind Energy Association), sampai dengan tahun 2007 perkiraan energi listrik yang dihasilkan oleh turbin angin mencapai 93.85 GigaWatts, menghasilkan lebih dari 1% dari total kelistrikan secara global. Amerika, Spanyol dan China merupakan negara terdepan dalam pemanfaatan energi angin. Diharapkan pada tahun 2010 total kapasitas pembangkit listrik tenaga angin secara glogal mencapai GigaWatt.

Di tengah potensi angin melimpah di kawasan pesisir Indonesia, total kapasitas terpasang dalam sistem konversi energi angin saat ini kurang dari 800 kilowatt. Di seluruh Indonesia, lima unit kincir angin pembangkit berkapasitas masing-masing 80 kilowatt (kW) sudah dibangun.

Tahun 2007, tujuh unit dengan kapasitas sama menyusul dibangun di empat lokasi, masing-masing di Pulau Selayar tiga unit, Sulawesi Utara dua unit, dan Nusa Penida, Bali, serta Bangka Belitung, masing-masing satu unit. Mengacu pada kebijakan energi nasional, maka pembangkit listrik tenaga bayu (PLTB) ditargetkan mencapai 250 megawatt (MW) pada tahun 2025.

Ada ribuan turbin angin yang beroperasi, dengan kapasitas total 58.982 MW yang 69% berada di Eropa (2005). Dia merupakan cara alternatif penghasilan listrik yang paling tumbuh cepat dan menyediakan tambahan yang berharga bagi stasiun tenaga berskala besar yang berbeban besar. Penghasilan kapasitas listrik diproduksi-angin berlipat empat antara 1999 dan 2005. 90% dari instalasi tenaga angin berada di AS dan Eropa. Pada 2010, Asosiasi Tenaga Angin Dunia mengharapkan 120.000 MW akan terpasang di dunia.

Jerman, Spanyol, Amerika Serikat, India dan Denmark telah membuat invesatasi terbesar dalam penghasilan listrik dari angin. Denmark terkenal dalam pemroduksian dan penggunaan turbin angin, dengan sebuah komitmen yang dibuat pada 1970-an untuk menghasilkan setengah dari tenaga negara tersebut dengan angin. Denmark menghasil lebih dari 20% listriknya dengan turbin angin, persentase terbesar dan ke-lima terbesar dari penghasilan tenaga angin. Denmark dan Jerman merupakan eksportir terbesar dari turbin besar.

Penggunaan tenaga angin hanya 1% dari total produksi listrik dunia (2005). Jerman merupakan produsen terbesar tenaga angin dengan 32% dari total kapasitas dunia pada 2005; targetnya pada 2010, energi terbarui akan memenuhi 12,5% kebutuhan listrik Jerman. Jerman memiliki 16.000 turbin angin, kebanyakan terletak di utara negara tersebut - termasuk tiga terbesar dunia, dibuat oleh perusahaan Enercon (4,5 MW), Multibrid (5 MW) dan Repower (5 MW). Provinsi Schleswig-Holstein Jerman menghasilkan 25% listriknya dari turbin angin.


Pembangkit Listrik Tenaga Angin


Pembangkit Listrik Tenaga Uap (PLTU)

Posted by Aim on 7:42 AM with 1 comment
Pembangkit Listrik Tenaga Uap adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Bentuk utama pembangkit listrik jenis ini adalah Generator yang di hubungkan ke turbin dimana untuk memutar turbin diperlukan energi kinetik dari uap panas atau kering. Pembangkit listrik tenaga uap menggunakan berbagai macam bahan bakar terutama batu-bara dan minyak bakar serta MFO untuk start awal.
Pembangkit Listrik Tenaga Uap
PLTU yang pertama kali beroperasi di Indonesia yaitu pada tahun 1962 dengan kapasitas 25 MW, suhu 500 ¼C, tekanan 65 Kg/cm2, boiler masih menggunakan pipa biasa dan pendingin generator dilakukan dengan udara. Kemajuan pada PLTU yang pertama adalah boiler sudah dilengkapi pipa dinding dan pendingin generator dilakukan dengan hidrogen, namun kapasitasnya masih 25 MW. Bila dayanya ditingkatkan dari 100 - 200 MW, maka boilernya harus dilengkapi super hiter, ekonomizer dan tungku tekanan. Kemudian turbinnya bisa melakukan pemanasan ulang dan arus ganda dan pendingin generatornya masih menggunakan hidrogen. Hanya saja untuk kapasitas 200 MW uap yang dihasilkan mempunyai tekanan 131,5 Kg/cm2 dan suhu 540 ¼C dan bahan bakarnya masih menggunakan minyak bumi.

Ketika kapasitas PLTU sudah mencapai 400 MW maka bahan bakarnya sudah tidak menggunakan minyak bumi lagi melainkan batu bara. Batu bara yang dipakai secara garis besar dibagi menjadi dua bagian yaitu batu bara berkualitas tinggi dan batu bara berkualitas rendah. Bila batu bara yang dipakai kualitasnya baik maka akan sedikit sekali menghasilkan unsur berbahaya, sehingga tidak begitu mencemari lingkungan. Sedang bila batu bara yang dipakai mutunya rendah maka akan banyak menghasilkan unsur berbahaya seperti Sulfur, Nitrogen dan Sodium. Apalagi bila pembakarannya tidak sempurna maka akan dihasilkan pula unsur beracun seperti CO, akibatnya daya guna menjadi rendah.
Skema PLTU Batu Bara
PLTU batu bara di Indonesia yang pertama kali dibangun adalah di Suryalaya pada tahun1984 dengan kapasitas terpasang 4 x 400 MW. Kemudian PLTU Bukit Asam dengan kapasitas 2 x 65 MW pada tahun 1987. Dan pada tahun 1993-an beroperasi pula PLTU Paiton 1 dan 2 masing-masing dengan kapasitas 400 MW. Kemudian PLTU Suryalaya akan dikembangkan dari unit 5 - 7 dengan kapasitas 600 MW/unit. PLTU batu bara pada tahun 1994 kapasitasnya sudah mencapai 2.130 MW (16% dari total daya terpasang). Pada tahun 2003 kapasitasnya diperkirakan sekitar 12.100 MW (37%), tahun 2008/09 mencapai 24.570 MW (48%) dan pada tahun 2020 sekitar 46.000 MW. Sementara itu pemakaian batu bara pada tahun 1995 tercatat bahwa untuk menghasilkan energi listrik sebsar 17,3 Twh dibutuhkan batu bara sebanyak 7,5 juta ton. Dan pada tahun 2005 pemakaian batu bara diperkirakan mencapai 45,2 juta ton dengan energi listrik yang dihasilkan mencapai 104 Twh.

Banyaknya pemakaian batu bara tentunya akan menentukan besarnya biaya pembangunan PLTU. Harga batu bara itu sendiri ditentukan oleh nilai panasnya (Kcal/Kg), artinya bila nilai panas tetap maka harga akan turun 1% pertahun. Sedang nilai panas ditentukan oleh kandungan zat SOx yaitu suatu zat yang beracun, jadi pada pembangkit harus dilengkapi alat penghisap SOx. Hal inilah yang menyebabkan biaya PLTU Batu bara lebih tinggi sampai 20% dari pada PLTU minyak bumi. Bila batu bara yang digunakan rendah kandungan SOx-nya maka pembangkit tidak perlu dilengkapi oleh alat penghisap SOx dengan demikian harga PLTU batu bara bisa lebih murah. Keunggulan pembangkit ini adalah bahan bakarnya lebih murah harganya dari minyak dan cadangannya tersedia dalam jumlah besar serta tersebar di seluruh Indonesia.
Batu Bara

Saturday, July 23, 2011


            
Medan Listrik
Adanya medan listrik yang disebabkan oleh pembangkit dan transmisi serta medan magnet yang ditimbulkan oleh peningkatan penggunaan peralatan rumah tangga/ perkantoran yang menggunakan tenaga listrik secara tidak langsung akan menimbulkan masalah terhadap kesehatan manusia, hanya saja sampai berapa besarkah kuat medan listrik dan medan magnet yang terpapar ke tubuh manusia yang dapat menimbulkan masalah. 
Adanya induksi medan magnetik yang dihasilkan oleh alat-alat rumah tangga terhadap manusia sedikit banyak akan mempengaruhi tingkat kesehatan secara tidak langsung, induksi tersebut akan menyebabkan tersimpannya sejumlah elektron dalam tubuh manusia dan merupakan sesuatu yang tidak normal. Kelebihan elektron tersebut akan mempengaruhi kerja susunan syaraf yang membuat komunikasi antar set terganggu, dimana elektron tersebut tersimpan dalam tubuh karena tubuh tesebut tidak dapat mengalirkan kelebihan elektron ke bumi disebabkan terisolasi terhadap bumi. 

Medan Magnet
Hal ini sering kita mendengar keluhan kesehatannya terganggu (tidak bisa tidur, stress dll) dari orang-orang sebagai pengguna alat-alat listrik seperti komputer, TV, radio, microwave dan sebagainya. Mungkin bagi orang awam hal tersebut bukan merupakan masalah yang serius, dan akan hilang jika beristirahat (tidak menggunakan alat listrik itu untuk sementara). lni adanya kejadian seperti itu ditambah semakin banyaknya artikel atau tulisan yang membahas masalah pengaruh listrik bagi kesehatan , muncullah berbagai penelitian untuk membuktikan kebenarannva. Awal dari kekhawatiran mulai timbul ketika adanya penelitian yang dilakukan oleh Wertheimer & Leeper 1979 yang mendapati adanya korelasi antara pemaparan medan listrik dengan kejadian penyakit leukemia pada anak.

Tetapi sebelumnya telah banyak dilakukan penelitian tentang pengaruh medan listrik terhadap kesehatan manusia antara lain:
  • Korobkova dan kawan-kawan (1972), melakukan penelitian terhadap 250 tenaga kerja pada gardu induk 500 kV di Uni Sovyet yang terpapar selama 10 tahun didapati adanya gangguan susunan syaraf pusat, keluhan nyeri kepala dan gangguan tidur.
  • Kowenhoven dan kawan-kawan (1979) dari John Hopkins Hospital melakukan penelitian terhadap tenaga kerja yang telah bekerja selama 3,5 tahun pada sistem transmisi 345 kV tidak ditemukan adanya gangguan kesehatan.
  • Milham (1985) melakukan analisa terhadap penelitian yang terjadi pada pekerja antara tahun 1950 -1982 di Washington, disimpulkan bahwa telah terjadi peningkatan proporsional ratio kematian untuk leukemia dan limfoma non hodgkin pada pekerja yang terpapar medan listrik dan dari sini dapat disimpulkan bahwa medan listrik bersifat karsinogenik.
  • Qiang K (1994) melakukan penelitian terhadap 964 pekerja yang terpapar medan elektromaknetik dan 66 pekerja yang bertugas sebagai petugas pemeliharaan jaringan transmisi 750 kV di Cina, ternyata dari basil pemeriksaan tidak terdapat gangguan kesehatan dan mereka yang bertugas pada pemeliharaan jaringan dan tinggal sepenuhnya dibawah jaringan dengan tingkat pemaparan kurang dari 5 kV/m.
Sementara itu WHO menyatakan kira-kira 25.000 artikel yang meneliti tentang pengaruh biologi dan penggunaan peralatan kesehatan dari non - ionizing radiation selama 30 tahun, menunjukkan perlunya penelitian lebih lanjut walaupun sebenarnya tidak ada pengaruh dari pemaparan medan listrik maupun medan magnet terhadap kesehatan manusia, memang untuk dosis pemaparan yang tinggi dapat menimbulkan gangguan kesehatan.

Pengaruh atas kesehatan umum; beberapa kelompok masyarakat mengeluhkan adanya simptom akibat pemaparan medan elektromagnetik di rumah seperti sakit kepala, gelisah, depresi dan bunuh diri, nuaseam, kelelahan dan menurunnya libido, tetapi para ahli menyatakan bahwa gangguan kesehatan tersebut mungkin disebabkan oleh kebisingan atau faktor lain dari lingkungan, atau oleh kegelisahan yang berhubungan dengan kehadiran teknologi baru.



Pengaruh dari kehamilan; banyak sumber yang berbeda dan pemaparan medan elektromagnetik didalam kehidupan dan lingkungan kerja, termasuk layar komputer, kasur air dan selimut elektrik, mesin las, radar, telah dievaluasi oleh WHO dan organisasi lainnya. Seluruhnya menunjukkan bahwa pemaparan medan pada level lingkungan tidak meningkatkan resiko seperti kelahiran spontan, malformasi, berat badan rendah, dan penyakit turunan.Ada beberapa laporan yang menyatakan adanya hubungan antara masalah kesehatan dan perkiraan pemaparan medan elektromaknetik, seperti laporan prematur dan berat badan rendah pada anak dari pekerja di industri elektronika, tetapi ini tidak dilihat oleh kalangan peneliti sebagai sesuatu yang disebabkan oleh pemaparan medan.

Pengaruh terhadap katarak; lritasi mata dan katarak telah dilaporkan pada pekerja yang terpapar radiasi tinggi dari radio frekuensi dari microwave, tetapi penelitian pada hewan tidak mendukung hal tersebut.

Medan elektromagnetik dan kanker; walaupun banyak penelitian, pada kenyataannya masih tetap sesuatu yang kontroversial. Walaupun begitu, jelas bahwa jika medan elektromaknetik mempunyai pengaruh atas kanker, kemudian setiap kenaikan dari resiko akan sangat kecil. Hasil yang diperoleh berisi banyak inkonsistensi, tetapi tidak ada kenaikan yang besar dalam resiko yang telah ditemukan untuk kanker pada anak-anak dan orang dewasa.

Sejumlah penelitian epidemiologi mengingatkan adanya sedikit peningkatan dalam resiko leukemia bagi anak dengan pemaparan medan magnet frekuensi rendah di rumah. Begitupun para peneliti tidak dapat menarik kesimpulan secara umum bahwa hasil ini mengindikasikan hubungan sebab-musabab antara pemaparan medan elektromagnetik dan penyakit. Hal ini disimpulkan karena binatang dalam penelitian laboratorium gagal menunjukkan pengaruh reproduksi bahwa secara konsisten dengan hipotesa bahwa medan elektromagnetik sebagai penyebab kanker.